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Abstract. We generalise a method derived from the theorem on the separation of coupled 
equations which was stated previously to solve the case of two equations. I t  will be shown 
that this generalisation is always possible with a sequence of special transformation in 
terms of scaling parameters. The case of a system of three coupled differential equations 
is considered in some detail including a discussion on the search and use ofthese parameters. 

1. Introduction 

Consider the following system of coupled differential equations 

r p +f;lrr = c B,Y, i, j = 1, . . . , n (1) 
I 

in which P may be any linear differential operator and J ( r )  and B,](r) are assumed 
to be analytic functions of the variable r. For instance, in the many-channels problem 
(1) would correspond to n coupled Schrodinger equations with 

ll( 1, + 1) 
r2 

P = d2/dr2 f;(r)  = k5---Bii(r) 

where B,( r )  are expressed in terms of some integrals and usually are symmetric in the 
sense B, = BIZ. 

The motivation of the present work is twofold. 
(i)  A general method for separation (decoupling) of (1) is still not available at 

present and this obviously constitutes an interesting challenge for further investigations 
from the mathematical point of view. 

(i i)  In applications to physical problems (for instance the Schrodinger case) the 
conventional numerical iteration procedure or variational approach which in most 
cases requires a considerable amount of computational work particularly when strong 
coupling and long-range coupling interactions are involved because of the slow rate 
of convergence or even divergence of the iterated solutions. It is hoped that one of 
the remedies to this situation may lie in the present approach in which a new representa- 
tion is set up such that system (1) can be completely or partially decoupled and 
transforming the strong coupling problem into a weak coupling one for which the 
conventional iteration methods can be handled more conveniently. We refer to Cao 
(1981, 1982, 1984 and references therein, hereafter referred to as I ,  11 and 111, respec- 
tively) for a more general introduction to this subject. 

0305-4470/88/030617 + 08$02.50 @ 1988 IOP Publishing Ltd 617 



618 Cao X u a n  C h u m  

2. The transformation matrix 

Let 7 > 2 and write (1 )  in a more convenient matrix notation: 

[ E3 + PI Y = BY 

where Y is a column matrix (y , ) ;  m, 1 = 1,2,. . . , n ;  IT = PI,, ; I ,  is an  n x n unit matrix; 
F is a diagonal matrix U,) and B is an n x n symmetric matrix (E,,,J. 

Consider now an n x n matrix T,, defined by 

T n = ( "  0 I n - *  " )  
where 

T 2 = (  
- ( l + a )  1 - a  

is a 2 x 2  matrix defined in I. On the other hand, we have already introduced an  
arbitrary parameter a related to a by: 

a = 2a + (1 +4a2)"*.  

It is useful to note that 

T i 1  being the inverse of T,,. 
Note that if we had defined the transformation matrix by 

then it can be verified that 7' is unitary and  unimodular, i.e. belongs to SU( n ) .  However 
we find it more convenient to use T, instead of Tn for reasons to be seen shortly below. 

We introduce another column matrix Z defined by ( Z , ) :  

Z = T n Y .  

Then system (2) can be written as 

[ P +  T,,( F - B )  T , ' ] Z  = O  

where the term T,, ( F  - E )  T i 1  can be cast in the form 

1 T , ( F -  B ) T ; '  =- L + + J +  K + L 
A 

where L, J,  K are the n x n matrices: 
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Here, h is an  ( n  - 2 )  x ( n  - 2 )  matrix obtained by truncating F - B of the first two rows 
and columns; m is a rectangular 2 x ( n  - 2 )  matrix and m+ its adjoint; g is a 2 x 2 matrix 

g = ( g i j )  i, j = 1 , 2 .  

More precisely ( k  = 3 , 4 ,  . . . , n ) :  

4Af + 2 a B I 2  fAf + 2 a B 1 2  
g1 I = f C r 1  + f 2 )  + ( 

+ 4a 2 )  1 / 2 

B12 - cu Aj’ 
Af =f2  -f1 ( 1  +4,2)”2 g12 = g2,  = - 

= (mik) mik=C(T2)i,Bjk. 
J 

Consider now sufficiently large values of LY such that ( 1  + 4 a 2 ) ” 2  >> 1 .  After some simple 
algebra, it can verified that: 

1 a 
I l * @ l <  < 11 * al. 

( 1  + ~ c u ’ ) ’ / ~  < ( 1  + 4a’)’’’ A 

From relation (4) this means that the effect on the coupling of the matrix L+ is negligible 
compared to the effect of J, K and Lt .  The space spanned by Z may consequently 
split into two subspaces 

z‘2’ = ( Z , )  

[ P I , + ~ ] z ; ’ )  = m Z ( n - 2 )  

Z’n-2) = ( Z k )  

and system (3) can be rewritten as: 

[ P z n - 2 + h ] z ‘ n - 2 ’ = 0 .  

More precisely we have: 

+ 81 I l z l  = gl Z Z 2  + 1 ml k z k  

[ P + f k  l z k  = C B k / Z /  k Z I  k, l = 3 , 4 , .  . . , n. ( 7 )  

This means that, if Z ‘ n - 2 )  can be obtained as a solution of (7 ) ,  its elements may 
be replaced in (6) which is then reduced to a system of two coupled differential 
equations. It has already been shown in I1 that this type of equation can, with some 
supplementary constraints on the choice of a, become completely or partially decou- 
pled. The choice as well as the use of this parameter will be discussed in the next 
paragraph. 

O n  the other hand, we may note that ( 7 )  is formally exactly the same as ( 1 )  but 
with the dimension reduced by two units. Repeating then the above procedure once 
again with the choice of another parameter we see that the space Z ‘ n - 2 )  in  turn can 
be decomposed into Z‘,’) ,  Zin-’) with the corresponding ( n  -4 )  x ( n  - 4 )  matrix h , ,  as 
well as g , ,  m l .  

t See appendix 1. 
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As each step reduces the original dimension by two units, at the end of the process 
we shall reach the smallest system of coupled equations with two or three equations 
depending on the even or  odd  character of n, i.e. n = 2 t  or  n = 2 t  + 1 ( t  = 0,1,. . .). 
Both cases require t parameters CY,,. Each one  is closely related to the specific analytic 
behaviour of the quantity B2p+l,zp+2/f2p+2 -hP+, together with the condition 
( t  + 4a2)’12 >> 1 t. 

The following diagram summarises the method: 

3. The system of three equations 

As n = 3, we have t = 1 so that only one parameter is needed. In (8) we obtain three 
equations in which the third one is uncoupled. Consider another representation 

W = ( W , )  l = l , 2 , 3  W = T ( A ) Z  

where T ( A )  is defined in I1 as 

with 

Bl2 f=-----. a+Y 
1 + 4 a y  A f = f 2  -fl y = h f  

A = 2 f t ( 1 + 4 f ’ ) ’ ”  

Neglecting only the first term in (5), in this new representation, the exact form of (1) 
is 

1 
1 + A  

[ P + $( f l  + f 2 )  + j( if2 t 4B:2) I / ’  + y[ PI A]] W, 

1 
1 +A’ 

- 

r p +f;l w3 = 0 

[P ,  AI  Wi + (-dBi, + cBx) W, 

in which 

c = - 2 ( a  + A )  

and [ , ] means the commutator bracket. 
d = 2( 1 - a A )  

+ S e e  below and appendix 2 
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In order to obtain the original solution Y of I we must consider the inverse 
transformation 

y =  v;’w (9) 

where 

We find 

Note also that if we had used v, instead of V, with 

where e = [c2 + d 2 ] ’ / *  = 2[( 1 + A*)( 1 + u ~ ) ] ” ~  then it can be verified that V, is unitary 
and unimodular (SU(3)) and can be written as 

V,= -sin cp cos Q 

(CO: Q S ip .  H) 
where tan Q = d / c  which clearly is equivalent to a rotation around the third axis. 

4. The scaling and mixing parameters 

As the problem is now reduced to a sequence of systems of two coupled differential 
equations, it is interesting to investigate further this special case and point out a number 
of remarks which will be useful in the choice of the parameter cy and the role of the 
conventional mixing parameter. Consider, for instance, the Schrodinger case ( P  = 
d2/dr2)  so that 

d2A dA d 
dr2  d r  d r  

[P,A]=-+2----. 

This means that the R H S  of the first two equations in (9) involves three coupling terms 

where 

1 d2A 
1 + A 2  d r  1 + A 2  dr2  

N=-- 2 dA M = - -  

and the third term is known. 
If the quantity y = B , , / A f  is independent of the variable cy, we always have N = 0, 

M = 0 so that the two equations are completely separated as stated by the theorem 
in I. 
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If this is not the case, we also expect that an appropriate choice of the parameter 
a will minimise the effect of the terms M and N compared to the effect of the third 
term which involves the coefficients c and d. 

More precisely, after some algebra, we find that M and N are given by 

2 - dY M=- 
l + 4 y 2  d r  

d M  
d r  

N=-+2AM2 

which shows that M is always independent of the choice of a but is strongly related 
to the analytic behaviour of y (  r). To see this more clearly, let us now be more specific 
by assuming (as is usually the case in many-channel problems) that y (  r )  is a monotonic 
decreasing function with increasing values of r, i.e. y( r )  = C / r P  ( C  is a constant, 
p b 2). Then (1 +4y2)- '  is essentially an increasing function (from O +  1) while d y / d r  
is a decreasing one. There exists a position r = ro where M = MO reaches a maximum 
(in absolute value). We find for this case 

which shows that, for fixed p ,  MO is decreasing with increasing coupling strength C. 
We are thus led to an interesting situation in which the original difficulty pertaining 
to the strong and long-range coupling can be avoided and the problem transformed 
into another one with weak and shorter-range coupling (due to the effect of d y l d r )  
to be dealt with more conveniently with conventional iteration methods. The quantity 
N is dependent on a so that this parameter may be chosen graphically such that 

N, M << c, d 

(see appendix 2). 
Therefore, for strong coupling problems, the effect of the operator (1 + A')- ' [  P, A] 

on the coupling terms is expected to be negligible compared to the effect of terms 
involving the quantities C and d which generally increases with a. 

As an example, consider the case where p = 2, C = 6 so that y (  r )  = 6/ r2. For a = 7.0 
we find MO = 0.24 (1 + = 0.072 and (in absolute values) 

N,  M < 0.20 c ,d>lO 

everywhere. Consequently, as a first stage, we may consider these two equations as 
separated and the effects of the commutator can be re-injected in a second stage as a 
perturbation in the equations if more accuracy is needed. For the physical aspects of 
this special case and comparison with other methods see, e.g., Cao and Bougouffa 
(1987). 

The quantity a plays the role of the scaling parameter for obvious reasons and 
leads to the definition of the mixing parameter. In fact, in the present theory, we may 
discern two cases. 

( i )  If y is independent of r then 

1 - a  
X=l+a 
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(ii) If this is not the case, we must consider first a mixing function 
d 1-aA x( r) = - =- 
c a + A  

which will be useful in the construction of the ‘trial function’ in conventional variational 
approaches. The mixing parameter for this case will be 

x = lim x( r). 
,-+m 

As a check of consistency, consider the following cases. 
(i)  If BI2  = 0 (no coupling), then a = 0, a -j 1, x -+ 0 (no mixing). 
( i i )  If Af = 0 (exact resonance), then y -+ 03, a large so that A + 1, ,y -+ 1 (maximum 

coupling). 

5. Conclusion 

The present work completes the series of papers dealing with the theory of separation 
of a system of coupled differential equations. It is shown that, with an extension of 
the use of the special transformation matrix T,, the system of n coupled equations 
can always be broken into n / 2  partial systems of two coupled equations. Each of 
these systems can be made tractable by use of a second transformation of the type 
T, (A)  corresponding to the scaling parameters a which are related to the analytic 
behaviour of the coupling functions. The theory finally leads to a logical definition 
of the mixing function and mixing parameter for each of these subsystems. 
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Appendix 1 

Note that the elements of the matrices h and m defined in K ,  L are respectively (Ilk!); 
k, 1 = 3,4, .  . . , n and (Z* a)&.; i = 1,2 .  Therefore in ( 5 ) ,  if we neglect the first two 
terms, h and m will be unaffected by the approximation while the matrix g must be 
replaced by g with: 

g,z = &I = 

On the other hand, if  we neglect only the first term then g will also remain unaffected. 

Appendix 2 

In order to determine the parameter in question, consider for example the function 
A(a ,  y )  defined in equation (8) and above. This parameter must obviously comply to 
the following conditions. 
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(i)  (1+4a2)"'>>1. 
(i i)  It must be chosen such that the effect of the operator (1+A2)- '[P,  A] is as 

The function A has the following mathematical properties. 
(i) It is always analytic even when the coupling function have singularities. 
( i i )  If y ( r )  is a monotonic decreasing function, A is also monotonic (i.e. dA/dr  

(iii) I t  can be verified that: 

small as possible. 

does not change sign). 

dA d y  dA 
d r a / d r l  r+(I d r  

lim - = 0. - 

These properties are helpful as a guideline and suggest various alternatives for the 
determination of a, for example resulting in the numerical or graphical solution. As 
explained in the text, the operator (1 + A')-'[ P, A] consists of two parts, M which is 
independent and N which does depend on the parameter a. The problem is to 
determine a such that N, M << c, d. In order to show the existence of such a solution, 
note that the quantities c and d are functions of a and r. For fixed r their absolute 
values increase almost linearly with increasing values of CY while the rate of increase 
of the function A( a, r) in the expression of N is less rapid. Therefore, if MO < 1, M 2  << 1 
and there always exists values of cy such that the above condition is satisfied. 

References 

Cao X C 1981 J.  Phys. A: Math. Gen. 14 1069 
- 1982 J .  Phys. A: Math. Gen. 15 2727, 3007 
- 1984 J. Phys. A: Math. Gen. 17 609 
Cao X C and Bougouffa S 1987 J. Physique to be published 


